Data-Driven NeuroTechnology lab
Data-Driven NeuroTechnology lab
People
Research projects
Publications
Resources
Teaching
Thesis, internships
Contact
Light
Dark
Automatic
Resources
Braindecode library
Deep learning for EEG decoding
Pierre Guetschel
Nov 21, 2025
GitHub
Documentation
MOABB library
Mother of All BCI Benchmarks
Pierre Guetschel
Nov 21, 2025
GitHub
Documentation
Foundation Models (Signal-JEPA)
Tutorial for loading and fine-tuning pre-trained foundation models with Braindecode
Pierre Guetschel
Oct 31, 2025
Detailed Tutorial
Pre-trained models
Conference Contributions
Posters, talks, and workshops
Jordy Thielen
Sep 5, 2024
Workshop3 Intro
Workshop3 Thielen
Poster Narayanan
Poster Scheppink
Poster Thielen
Review of Deep Representation Learning Techniques for BCI
Additional resources for the review of deep representation learning techniques for BCI.
Pierre Guetschel
,
Sara Ahmadi
,
Michael Tangermann
Aug 6, 2024
Articles list (CSV)
Generative Models
Collection of resources for generative models in BCI research
Guido Klein
,
Pierre Guetschel
,
Gianluigi Silvestri
,
Michael Tangermann
Mar 13, 2024
code
Diffusion model
EEGNet model (FID score)
Approximate UMAP
Embedding projection in online scenarios.
Peter Wassenaar
,
Pierre Guetschel
,
Michael Tangermann
Feb 25, 2024
approx-umap
ONEP
Unsupervised Mean-difference Maximization (UMM)
Toolkit for unsupervised BCI ERP classification.
Jan Sosulski
,
Michael Tangermann
Jun 9, 2023
GitHub
Python Noise-Tagging Brain-Computer Interface
A Python toolbox for brain-computer interfaces using code-modulated evoked potentials.
Jordy Thielen
May 30, 2023
GitHub
Documentation
Pre-trained motor-imagery models
Collection of pre-trained neural neworks for motor-imagery decoding.
Pierre Guetschel
May 29, 2023
Poster
Notebook
Pre-trained models
Detailed results
»
Cite
×