c-VEP Decoding Reconvolution & Zero-Training

Jordy Thielen jordy.thielen@donders.ru.nl https://neurotechlab.socsci.ru.nl/

Radboud University Donders Institute for Brain, Cognition and Behaviour Nijmegen, the Netherlands

Radboud University

Standard c-VEP stimulus protocol

Symbols encoded with a time-lagged m-sequence

A	23	24	25	26	27	28	29	30	31	0	
	31	0	1	2	3	4	5	6	7	8	
	7	8	9	10	11	12	13	14	15	16	
	15	16	17	18	19	20	21	22	23	24	
	23	24	25	26	27	28	29	30	31	0	
	31	0	1	2	3	4	5	6	7	8	T4 10 20 30 40 5050 50500 50 500 500000 500000000000_000
											Bit

[Spüler et al. (2012) PLOS ONE]

Average K synchronized trials (lag 0) to obtain template $\mathbf{T}_0 \in \mathbb{R}^{C \times T}$

$${f T}_0=rac{1}{K}\sum_j^K {f X}_j$$

Obtain other templates \mathbf{T}_i by adding time-lag equal to stimulus lag Classify spatially filtered trials with spatial filter $\mathbf{w} \in \mathbb{R}^C$

$$\hat{y} = \arg \max_{i} \rho(\mathbf{w}^{\top} \mathbf{X}, \mathbf{w}^{\top} \mathbf{T}_{i})$$

[Martinez-Cagigal et al. (2021) J Neural Eng]

Canonical correlation analysis (CCA)

 $\mathbf{t}_i = \mathbf{w}^\top \mathbf{T}_i$

[Hotelling (1936) Biometrica] [Spüler et al. (2012) ESANN] [Spüler et al. (2013) IEEE T Neur Sys Reh]

Requires a large training dataset!

- Depends on averaging trials to obtain templates
- Even worse when there is no relation between classes (i.e., sequences)

How can one reduce the required amount of calibration data?

- Exploit the repeating structure in the data
- Average events within and across trials (i.e., sequences)

Linear superposition hypothesis

The response to a sequence of events is the addition of the responses to the individual events.

[Capilla et al. (2011) PLOS ONE]

CCA for spatio-temporal decomposition (reconvolution)

 $\mathbf{t}_i = \mathbf{r}^\top \mathbf{M}_i$

[Thielen et al. (2015) PLOS ONE] [Thielen et al. (2021) J Neural Eng]

From supervised to semi-supervised with reconvolution

Calibrated (supervised): [Thielen et al. (2015) PLOS ONE]

 $\max_{\mathbf{w},\mathbf{r}} \rho(\mathbf{w}^{\top}\mathbf{X},\mathbf{r}^{\top}\mathbf{M}_i)$ $\hat{y} = \arg\max_i \rho(\mathbf{w}^{\top}\mathbf{X},\mathbf{r}^{\top}\mathbf{M}_i)$

Calibration-free (instantaneous): [Thielen et al. (2021) J Neural Eng] [Thielen et al. (2024) arXiv]

$$\max_{\mathbf{w}_i, \mathbf{r}_i} \rho(\mathbf{w}_i^{\top} \mathbf{X}, \mathbf{r}_i^{\top} \mathbf{M}_i)$$
$$\hat{\mathbf{y}} = \arg\max_i \rho(\mathbf{w}_i^{\top} \mathbf{X}, \mathbf{r}_i^{\top} \mathbf{M}_i)$$

Calibration-free (cumulative): [Thielen et al. (2021) J Neural Eng] [Thielen et al. (2024) arXiv]

$$\mathbf{X} = [\mathbf{X}_0, ..., \mathbf{X}_k]$$

$$\mathbf{M}_i = [\mathbf{M}_{\hat{y}_0}, ..., \mathbf{M}_{\hat{y}_{k-1}}, \mathbf{M}_i]$$

Calibration-free (cumulative, adaptive): [Thielen et al. (2021) J Neural Eng]

Jordy Thielen

CCA: [Thielen et al. (2015) PLOS ONE] [Thielen et al. (2021) J Neural Eng] UMM: [Sosulski & Tangermann (2022) J Neural Eng] [Sosulski & Tangermann (2023) arXiv]

[[]Thielen et al. (2024) arXiv]

Calibration-free adaptive cumulative and supervised

[Thielen et al. (2021) J Neural Eng]

Calibration-free converges to a calibrated model

Jordy Thielen

Conclusion

Exploiting structure in neural data

- Forward model assuming linear superposition hypothesis
 - Decreases number of model parameters
 - Increases number of repetitions per parameter
- Limits as well as eliminates the need for training data
 - Achieves high explained variance and BCI performance
 - Generalizes to unseen data/sequences
 - Realizes instantaneous, cumulative, and adaptive decoding

Reconvolution CCA (rCCA)

- Tutorial/demo at the end of the workshop
- Python Noise-Tagging BCI: https://github.com/thijor/pyntbci

Acknowledgements

Data-Driven Neurotechnology Lab (https://neurotechlab.socsci.ru.nl/)

- Michael Tangermann
- Sara Ahmadi
- Jan Sosulski

BCI lab

- Peter Desain
- Jason Farquhar
- Pieter Marsman
- Philip van den Broek

Join the Data-Driven Neurotechnology Lab @ Donders Institute!

If you are interested in BCI and the psychology of learning and self-introspection,

then join our team and the European Doctoral Network DONUT as PhD candidate!

Primer on posters:

- 64 (Tue): Towards gaze-independent c-VEP BCI: A pilot study
- 61 (Thu): Exploring new territory: Calibration-free decoding for c-VEP BCI
- 63 (Thu): Towards auditory attention decoding with noise-tagging: A pilot study

Reference c-VEP pipeline

$$\hat{y} = \arg \max_{i} \rho(\mathbf{w}^{\top} \mathbf{X}, \mathbf{w}^{\top} \mathbf{T}_{i})$$

[Martinez-Cagigal et al. (2021) J Neural Eng]

Jordy Thielen

Unsupervised Mean-Difference Maximization

Slice trial into K epochs $\mathbf{x} \in \mathbb{R}^D$

Assume symbol *i* is target defines target (A_i^+) and non-target epochs (A_i^-)

$$\Delta \boldsymbol{\mu}_{i} = \frac{1}{|A_{i}^{+}|} \sum_{j \in A_{i}^{+}} \mathbf{x}_{j} - \frac{1}{|A_{i}^{-}|} \sum_{j \in A_{i}^{-}} \mathbf{x}_{j}$$
$$\hat{\boldsymbol{\gamma}} = \arg \max(\Delta \boldsymbol{\mu}_{i}) \boldsymbol{\Sigma}^{-1}(\Delta \boldsymbol{\mu}_{i})$$

[Sosulski & Tangermann (2022) J Neural Eng] [Sosulski & Tangermann (2023) arXiv]

Jordy Thielen

Reconvolution & Zero-Training