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Background
Auditory attention decoding (AAD) aims to extract from brain activity the attended speaker
amidst candidate speakers, offering promising applications for neuro-steered hearing devices and
brain-computer interfacing[1]. Current state-of-the-art algorithms for AAD can do so with a mean
accuracy of about 85 % using 30 s decision windows.

Challenge
For real-world scenarios, a fast and accurate speaker detection is crucial to keep up with the quick
dynamics of natural language and turn-taking. Unfortunately, when decreasing the decision
window length to about 10 s, the accuracy quickly drops to below 80 %. This poses a significant
limitation for AAD.

Approach
BCIs based on the code-modulated visual evoked potential (c-VEP), the response to rapid
pseudo-random visual stimulation, have recently shown incredible performance surpassing previous
records[2]. In this study, we aim to leverage the code-modulated stimulus protocol to improve
speaker identification in AAD.
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INTRODUCTION

Recording
• 64-channel EEG
• BrainProducts BrainAmp

• 500 Hz sampling rate
• 5 participants

• 50 Hz notch filter
• 1-20 Hz bandpass

Stimulus modulation and presentation

• Two Dutch stories (6.5 min)[3]

• Five modulation depths (md)
• 0 (unmodulated), 50, 70, 90, 100 md
• Temporal muting of the audio signal

• Noise-codes: two modulated Gold codes[4]

• Smoothen sharp edges binary code
• Multiply smooth codes with audio signal
• Presented sequentially
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Stimulus modulation

Procedure
• Five runs; one for each condition
• One run; two trials (6.5 min); one per story
• First story to left ear, silence on right, followed by second story to right with silence on left

EXPERIMENT

Canonical correlation analysis (CCA)
CCA is a state-of-the-art model in both AAD[1] and BCI[2]. Commonly, it learns a spatial filter
w ∈ R𝐶 for 𝐶 channels and a temporal filter r ∈ R𝐿 of 𝐿 samples, using training data X ∈ R𝐶×𝑇 of 𝑇
samples and stimulus information Z ∈ R𝐿×𝑇 , optimizing the correlation 𝜌:

arg max
w,r

𝜌(w⊤X, r⊤Z𝑖) (1)

Determining the attended target symbol 𝑦̂ is performed by maximizing the correlation 𝜌:
𝑦̂ = arg max

𝑖

𝜌(w⊤X, r⊤Z𝑖) (2)

Envelope CCA (eCCA)
The synchronization between the listener’s brain signals and the attended speech envelope is stronger
than with the ignored speech envelope[1]. Therefore, the AAD field commonly uses the envelope,
for instance from a Gammatone filter[5]. Hence, for eCCA, Z𝑖 = E𝑖 where E𝑖 is the envelope matrix
of the 𝑖-th speaker, with 𝐿 delayed versions.

Reconvolution CCA (rCCA)
The rCCA method originates from the c-VEP field and models the response to a sequence of events as
the linear summation of the responses to the individual events[4]. It denotes the event onsets, duration,
and overlap in a Toeplitz matrix M𝑖. This matrix is multiplied with the envelope to incorporate the
intensity of the modulated audio played, hence, Z𝑖 = M𝑖.

ANALYSIS

Classification accuracy
A number of observations were made:
• Overall, eCCA reaches higher performances than rCCA.
• 0 md (full intensity) performs lower than 70 md, 90 md, and 100 md, but not lower than 50 md.
• With 70 md, already an accuracy of 85 % is obtained after 10 s, which increases to a perfect
decoding at 60 s.
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Classification accuracy

depth [md] method 1 s 10 s 30 s 60 s
0 eCCA 60.4 80.7 93.2 98.2

50 eCCA 58.3 80.2 89.9 96.4
rCCA 61.7 80.4 89.6 96.4

70 eCCA 63.7 83.0 96.1 100.0
rCCA 61.7 84.7 96.4 99.6

90 eCCA 66.7 89.4 95.7 97.1
rCCA 59.1 75.6 86.0 90.8

100 eCCA 69.2 94.2 99.6 100.0
rCCA 59.6 81.0 94.7 99.0

Classification accuracy

RESULTS

Realizing auditory noise-tagging
Our pilot study demonstrated that incorporating noise information into speech signals can
enhance decoding performance. This improvement may result from introducing additional
decodable information and the decorrelation of potentially correlated audio sources. These findings
represent an initial step toward applying noise tagging in the auditory modality and advancing
auditory attention decoding.

Towards parallel stimulation
• Two key limitations:

– Small sample size
– Sequential stimulation

• Valuable insights into feasibility c-AEP

• First step of c-AEP for AAD
• However, parallel stimulation is needed for
more practical AAD application

Optimizing CCA

• Performance rCCA on-par or slightly lower than eCCA
• eCCA emphasizes higher-order brain activity (speech envelopes)
• rCCA may be more attuned to early sensory responses (noise-codes)
• eCCA optimized for AAD domain, rCCA originally for c-VEP domain
• Future work: optimize rCCA for AAD domain

Effect of amplitude modulation on speech intelligibility

• Determining optimal modulation depth
• 100 md yielded highest performance

– Audio more unintelligible
– Uncomfortable to listen to

• 70 md outperformed no modulation (0 md)
– Less audio distortion than 100 md

• Future work:

– Behavioural study to explore threshold at
which modulation becomes inaudible

– Study decoding performance at threshold
– Optimizing noise-codes to preserve

speech characteristics

Generalization to other domains

• Noise-codes can be embedded in any audio signal (e.g. music)
• Could make signal more orthogonal, thereby enhancing decoding
• Noise-codes in tactile domain; new possibilities for a diverse range of users

OPEN QUESTIONS

DISCUSSION
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